p-ADIC ARAKELOV THEORY
نویسنده
چکیده
We introduce the p-adic analogue of Arakelov intersection theory on arithmetic surfaces. The intersection pairing in an extension of the p-adic height pairing for divisors of degree 0 in the form described by Coleman and Gross. It also uses Coleman integration and is related to work of Colmez on p-adic Green functions. We introduce the p-adic version of a metrized line bundle and define the metric on the determinant of its cohomology in the style of Faltings. It is possible to prove in this theory analogues of the Adjunction formula and the Riemann-Roch formula.
منابع مشابه
A Survey of the Hodge-Arakelov Theory of Elliptic Curves I
The purpose of the present manuscript is to give a survey of the Hodge-Arakelov theory of elliptic curves (cf. [Mzk1,2]) — i.e., a sort of “Hodge theory of elliptic curves” analogous to the classical complex and p-adic Hodge theories, but which exists in the global arithmetic framework of Arakelov theory — as this theory existed at the time of the workshop on “Galois Actions and Geometry” held ...
متن کاملAnabelian Geometry in the Hodge-Arakelov Theory of Elliptic Curves
The purpose of the present manuscript is to survey some of the main ideas that appear in recent research of the author on the topic of applying anabelian geometry to construct a “global multiplicative subspace”— i.e., an analogue of the well-known (local) multiplicative subspace of the Tate module of a degenerating elliptic curve. Such a global multiplicative subspace is necessary to apply the ...
متن کاملA Survey of the Hodge-Arakelov Theory of Elliptic Curves II
The purpose of the present manuscript is to continue the survey of the Hodge-Arakelov theory of elliptic curves (cf. [7, 8, 9, 10, 11]) that was begun in [12]. This theory is a sort of “Hodge theory of elliptic curves” analogous to the classical complex and p-adic Hodge theories, but which exists in the global arithmetic framework of Arakelov theory. In particular, in the present manuscript, we...
متن کامل$p$-adic Dual Shearlet Frames
We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...
متن کاملIntegral and p-adic Refinements of the Abelian Stark Conjecture
We give a formulation of the abelian case of Stark’s Main Conjecture in terms of determinants of projective modules and briefly show how this formulation leads naturally to its Equivariant Tamagawa Number Conjecture (ETNC) – type integral refinements. We discuss the Rubin-Stark integral refinement of an idempotent p1 iece of Stark’s Abelian Main Conjecture. In the process, we give a new formula...
متن کامل